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EVALUATION

1. This is the Final Report on the contract. It covers the period
1 July 77 to 11 Oct 79. The objective of this research was to study
the waves which can propagate on a honeycomb panel of the type used
to construct the shelters which house much of the ground-based electronic
equipment developed by the Electronic Systems Division. By knowing
the waves that can propagate on such panels, it will be possible to
develop a system of non-destructive evaluation (NDE) which can, in a
cost-effective way, find defe tive panels and avoid their incorporation
into shelters.

2. Although this work terminated before developing a complete theory
appropriate to the exact honeycomb structures used in shelter panels,
it does provide adequate information for understanding the waves
appropriate for the NDE of shelter panels and would form the basis of
an experimental study.

ALAN J. BUDREAU
Project Engineer
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I. INTRODUCTION

Honeycomb panels and foam-core panels consist of a light-weight

core bonded between face plates. This fabrication results in a strong

light-weight and insulating construction element. Such panels are used

in containers for housing electronic equipment. Honeycomb panels are

also used in airplane construction, while foam-core panels are used for

insulating tanks.

In the case of the honeycomb panel, the core consists of an array

of thin-walled, hollow cylinders of hexagonal cross-section, as shown

in Figure t, and resembles a honeycomb. The core material consists

of waxed cardboard in the case of equipment containers, while in air-

plane construction it is usually metal. Face plates are attached to both

ends of the core using epoxy or other adhesive bonding materials (one

of the face plates is shown in Figure 1).

Foam-core panels consist of a foamed plastic, such as styrofoam,

between face plates. The foam can be generated by interacting the

chemical agents directly on the face plates, in which case a welded bond

exists between the foam and plate. Alternatively a prepared foam core

may be glued to the face plates.

During fabrication and use, defects can occur within the panel, and

are therefore not detectable by visual inspection. One type of defect is

a region of a face plate that is not bonded to the core. Another defect in

honeycomb panels is the presence of water in some of the cells, which

can degrade a cardboard core and weaken the epoxy or adhesive bond

between core and faceplate. Other defects are buckled or fractured

cell walls.
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Face Plate

z4

Figure 1. oneycomb core attached to One face Plate.



Currently, acoustic non-destructive evaluation (NDL) techniques

are used to locate the defects cited above in honeycomb panels. An

acoustic beam in a fluid is directed at normal incidence on the panel and

received at the opposite face. The beam is then scanned in a raster

fashion over the area of the panel. Unbonded regions interrupt the trans-

mission while water in cells increases the transmission. Since the size

of the acoustic beam is on the order of the cell diameter, the raster

scan inspection procedure is very lengthy for a large panel. A great

reduction in inspection time could be achieved by propagating the acous-

tic waves parallel to the face plates, rather than perpendicular to them.

In this way, one would inspect an entire strip along the panel at one time.

Reinspecting installed panels with only one face exposed would require

using waves that propagate along the panel.

A. Honeycomb Panels

Low frequency studies of propagation along honeycomb panels (I

have been carried out with the aim of NDE inspection in mind. How-

ever, it was recognized that successful NDE inspection would require

the use of high frequencies for which the acoustic wavelengths would

be on the order of the cell diameter. Establishment of a sensitive test

procedure requires a knowledge of the propagation characteristics of

the modes guided by honeycomb panels. From such knowledge, one can

determine the frequency and mode polarization most useful for inspec-

tion. These choices must be made in relation to the geometric design

and elastic properties of materials used in the panel.

In this report we first compute the properties of waves propagating

through a honeycomb of infinite extent. Because the honeycomb is a

-3-



periodic structure in two dimensions (and uniform in the third dimen-.

sion), the waves propagating through it are Bloch waves, which are anal-

ogous to plane waves in an elastic continuum. Each elastic field quantity

in a Bloch wave is the product of a plane wave's exponential factor, and a

second function that gives the variation of the field quantity within a unit

cell. In the case of a honeycomb, this second function is defined only

within the honeycomb walls if the space within the cells is assumed

empty. The waves guided by an assembled panel will be a combination

of the Bloch waves, just as the waves guided by a plate are a combina-

tion of the plane waves of an infinite medium.

The calculation of Bloch wave propagation characteristics are car-

ried out over the range from low to high frequencies. At low frequen-

cies (below 1. 0 kHz for a Shelter Core honeycomb) the core is found

to act as an elastic continuum of hLxagonal symmetry, and hence sup-

porting three wave types. At high enough frequencies (above 10 kHz

for the Shelter Caxre honeycomb) , the wavelength of all wave types

is on the order of the cell diameter, and hence the periodicity of the

honeycomb strongly effects the propagation.

Having computed the Bloch waves in an infinite honeycomb, we next

compute the characteristics of the waves guided by a structure consist-

ing of one face plate bonded to a semi-infinite honeycomb. In this case,

the waves guided by the face plate are strongly perturbed by the coupling

to the core. The SH and symmetric Lamb waves in the face plate are

found to radiate or leak energy in to the honeycomb, and hence are of

the leaky wave type. The flexural wave in the face plate is speeded up by

the honeycomb, but remains a bound surface wave. These calculations

are carried out treating the core as an elastic continuum. For a Shelter

-4- 1
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Core honeycomb this means frequencies below 1. 0 kHz for the SH wave

in the face plate, and below 10 kHz for the symmetric Lamb and flexural

modes of the face plate.

The cross-section of a regular hexagonal honeycomb is shown in

Figure 2. The core consists of strips or plates of thickness t, width w

and infinite length along z (out of plane of the paper). The strips are as-

sumed to be arranged in a regular hexagonal pattern. This assumption

idealizes actual honeycombs, whose fabrication leads to hexagons having

unequal vertex angles, and two of whose side walls are of double thick-

ness as compared to the other four.

A unit cell of the periodic core is indicated by the dashed curve in

Figure 2. The entire periodic core can be generated by translations of

the unit cell along the basis vectors d I and d as shown in Figure 2,

of the periodic structure. The cell is seen to be composed of plate

segments coupled at two Y joints. A primary part of the study of core

waves therefore involves the coupling of the plate waves at the Y joint.

The acoustic fields in the plate segments that form the cell walls

can be expressed as a superposition of plate modes. Since the thickness

t of the cell walls is one tenth of their width w, or less, thin plate ap-

proximations may be made for the plate modes, even for frequencies

where the cell diameter is on the order of the acoustic wavelength.

Consistent with this approximation we keep only the lowest four plate

modes, which are: 1) the shear wave with no variation across the plate -

the SH mode; 2) the lowest symmetric Lamb mode - L mode; 3) the lowest

anti-symmetric Lamb mode or flexural wave - F(0) mode; and 4) the first

cutoff flexural wave - F(1) mode.

-5-
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The F(t) mode is included since it has the same transverse varia-

tion through the thickness of the plate as the F(O) mode, and since its

attenuation constant vanishes as frequency goes to zero. Hence, this

mode will couple neighboring Y joints at low frequency and its inclusion

is necessary to accurately find the amplitude of the F(O) mode excited even

at an isolated Y joint. All higher order plate modes attentuate rapidly

away from the Y joint, even in the limit of zero frequency, and there-

fore do not couple neighboring Y joints. In addition these modes have

more variation through the thickness of the plate, and are therefore not

expected to be strongly excited.

The physical approximations used to obtain the mode coupling are

discussed in Section II. These approximations are embodied in a set of

twelve equations containing the amplitudes of the twelve modes. (four modes

in each of the three plates). From these equations a scattering matrix is

obtained that gives the amplitudes of each of the twelve modes excited at

the Y joint for any incident mode.

For propagation perpentidular to the cell axes the SH mode does not

couple to the L, F(O) and F(l) modes at the Y joint, as discussed in Sec-

tion II. Thus we may treat separately the case of waves having particle

motion parallel to the cell axis, which corresponds to the SH plate mode

polarization, and whose properties are found in Section III. The L, F(O)

and F(1) modes together give rise to two Bloch waves in the honeycomb

polarized with particle motion perpendicular to the cell axis, which are

considered in Section IV.

The case of propagation oblique to the cell axes is treated in Section

V. Here, the shape of the intersection of the slowness surfaces with the

principle planes Is found. From these curves and the propagation

i-



perpendicular to the cell axes it is possible to infer the shape of the com-

plete slowness surface. At high frequencies it is found that more than

three surfaces can exist, and these surfaces indicate that propagation

can take place only over a limited range of angles about the direction of

the cell axes.

The characteristics of Bloch wave propagation at low frequencies

are used to define the constants of an elastic continuum of hexagonal sym-

metry. This continuum is assumed to be directly bonded to an aluminum

face plate and the propagation constant of waves guided by the combina-

tion are determined in Section VI.

B. Foam-Core Panels

In studying foam-core panels, we have treated the case of waves

guided by a single aluminum face plate attached to a semi-infinite foam

core, as discussed in Section VII. The foam is treated as an isotropic

continuum, with elastic constants representative of typical static values

found in the literature. Both the case of directly bonded and glued foams

are considered. The waves are found to radiate or leak energy into the

foam. The rate of leakage and the propagation constant are found to be

strongly influenced by the presence of a glue layer.

-8-

Al-



II. MODE COUPLING AT A Y JOINT

The Y joint of three plates is shown in Figure 3. For each plate,

with index i = 1, 2, 3 a coordinate system (xi, yi, z) is established as

shown. In treating Block wave propagation oblique to the cell axes,

all four of the plate modes in the cell walls will couple at the Y joint.

In order to satisfy the coupling equations for all values of z along the

joint, all of the modes must have the same phase dependence exp(-jkzz),

where k is the wavenumber along z. This condition is the analoguez

of Snell's law in optics. Since the Bloch wave is formed by the plate

modes that are multiply scattered at the 'Y joint, all fields in the Bloch

wave must have the same phase variation along z, and hence kz is the

z component of the wavevector of the Block wave. The variation of the

modal fields along (xL, Yi, z) in each plate can be represented by equi-

valent transmission lines (26). Mode coupling at a "Y joint is then repre-

sented by an interconnection of the modal transmission lines, or by a

scattering matrix.

A. Transmission Line Representation

In the transmission line representation, the fields of each mode for

harmonic time dependence exp(jLwt) are expressed in the form

Vy(iN, yi, Z)- gt (Yd jkz

V zv Yl! 1) V(x 0 g 2 (y) a (i-a)

LTxx(xi Yi Z)J 
Lg 3(y i)

-9-



y3  x3

xl2

Figure 3. Y joint of three plates indicating the coordinate
system for each plate.
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T .,ioYeZ) q I(y.) jrzz

Tz) I(x.) q::s e (1-b)
V x(Xis Yip Z) [q3(Yi)]

In (1), the 1x3 matrices &(y,) and q(yi) are the mode vectors and V(xi), K

I(x i ) are the modal voltages and currents. In terms of traveling waves,

V(x.) = (be j KX + ae J/ x i ) 'Z"
• .,(2)

I(x.) = (be j x - ae ) I

where KC is the wavenumber of the mode, Z is the modal impedance, and

b, a are the amplitudes of the waves traveling in the + and - xi directions,

respectively. If the mode vectors are normalized such that

t/2
f &(y i) • (yi)dy ( i 3)

-t/2

then Re[V(x.)I*(x.) ] represents the power carried in the + x i direction

by the mode, per unit length along z. For propagating modes K and Z

are real and

Re[V(xi)I*(xi) ] = IbJ2 _ jaj 2  (4)

while for evanescent modes with K imaginary, Z is imaginary and

Re(V(x)I*(,i)] = ReZ (ab -a*b)J. (5)

The various modal quantities for plate waves have previously been de-

(5, 6)r ived

+ -Ii - :



For thin plates, the plane-strain approximations may be made for
the modal fields 7, 8) In this approximation, the cross-section of the
plate is assumed to remain a plane surface of constant width. Employ-
ing this approximation, we derive in the Appendix the various quantities
for each mode. The modal quantities are tabulated below. In these
pressions, is the shear modulus of the wall material, p is its den-
sity and v is Poisson's ratio. The wave number ks of shear waves in

the wall material is

ks 
(6)

1. SH Mode

/ k 2  k 2 ; Z 
(7)s z s 
(

0 0
k__ 1 2_ 2

[F -UP ' 2 (8)
2k ks

k 
k

2. L Mode

kL k. V(-v)/2

_ l'2-k2  z 9
LeV z-L 

12

-12-



0 
0

k 

k+z

Ky_ 1-v 1

k
2

3. F )Mode

FO t F (
kF0 = /6(i-v)

2 2

____ - k2((t! 2)2_y 2)

-2 ,L 2(- ). jkzy

2 W~i 2)2
'<(-" : I '-" 2r <u> : 2-- -- v ; '

R(Y jkk IIy

Here (12)

2 k 
r 3

N 6(-)+2 I -Vv r--, 2(2r-1) 
(13)

and

r Ik t (14)

-p13-
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4. F(1) Mode

kFi = -jkFO (15)

K- /k 2 kz Z =-W

2 1 K

I _ k 2 ((t / 2) 2 -Y2 )

(12-v)

&Y jky 1Y - k zY
-6(1- L.)(2ra(Y)) j2 T

N, 1+2r N I 7)

k 2

s1- 1+2r Sj~ 1+-2r

Here (16)

N 2 - kst 1-V (17)1 6(1i-v)(2r+1) -2(2r+i)J

and r is given by (13).

B. Representation of Coupling at Y Joints

The Y joint of three plates, as shown in Figure 3, may be viewed

as the connection to a triangular cylinder of three plates having end

faces perpendicular to x. With this view, mode coupling at the Y

joint is determined by the boundary conditions at the surfaces of the.

triangular cylinder. We assume that the cylinder is rigid and mass-

less. The assumption of rigid motion composed of translation and

rotation about the z axis is consistent with the plane strain approxi-

mation used for the modal fields. Neglecting the mass of the cylin-

der implies that the net force and torque about the z axis must vanish,

-14-



and ignores the kinetic energy that it stored in the cylinder's motion.

Rotation of the cross-section about the x and y axes is not taken into

account, nor are the torques about these axes considered. Experience

with structures that are periodic in one dimension suggests that the ef-

fect of neglecting the kinetic and potential energy in the cylinder is

limited to a small error in the frequencies predicted for the stop-

bands (9 , which is not expected to be significant for NDE applications.

The approximations used here are essentially the same as those used

to describe mode coupling at L and butt joints of two plates ( 1 .

If the rotation and torcque about the x and y axes were taken into

account more equations would be obtained than the number of scat-

tered waves. As a result, the scattering problem would be over

determined, and it would be necessary to include more scattered

modes in the plates. Physically, the particle velocities associated

with the rotation of the cross-section about x and y will be small

compared to the translational velocities. To estimate the differences

in the velocities cited, consider the F(O) mode to be incident in plate

I of Figure 3 at an angle 0 with respect to the x1 axis. This mode

will tend to rotate the triangle about the xt axis, in addition to rotat-

ing it about z and translating it along y," At the corner x, = 0,

I = t/2, the particle velocity due to the rotation about x is v (t/2)

while the translational velocity is v y. From the mode vector given

by (21) it can be shown that the ratio v z(t/2)/vy is of the order

/k t/2 sin 0, which is less than about (0. i)sin 9 for the highest

frequencies discussed here. In other words, the particle velocity

due to rotation about x t is small compared to the translational velocity,

-15-



and hence little error will be introduced by not accounting for the

rotation.

t. Particle Velocity Conditions

Let vi (yl)exp(-jkzz) be the particle velocity at the end face x. =0

of the ith plate in Figure 3. Now the motion of the triangular cylinder

consists of a translation voexp(-jk zz) of the center of gravity plus a

rotation Q z 0 exp(-jkzz). Referring to Figure 4, it is seen that the

particle velocity of the ith face, with the phase factor exp(-jkz z) un-

derstood, is

i(y i ) = v o0 + t zo xr = vo - Xoi Xy, + y°i d, (18)

where x oi and y oi are unit vectors along x i and yi, and

tI

d= (19)
2/T

is the perpendicular distance from the center of gravity to the trian-

gular faces.

Alternatively, the particle velocity vi(y.) can be expressed in

terms of the modes of the plate. Let VSi, ISi be the voltage and

current at x i = 0 of the SH mode in the ith plate. Similarly, let

V Li' ILi "and Voil I i and V Iii be the voltages and currents at

x. = 0 of the L, F(0) and F(i) modes in the ith plate. The particle

velocity at x. = 0 can be expressed in terms of the plate modes using

the modal quantities listed in the previous section. With the phase

factor exp(-jkz z) implied, the components of particle velocity are

k -jksY i  -Jksy i

-i -. 1 Lip. T Si Tk + Oi N 0 (2r-i) Ii Ni (2r-1)
/k (20)

-16-
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t V2 f _3-0

x
X 0i Wy i + yi wd

Figure 4. Cross-section of the triangular cylinder at a Y joint, which
is assumed to move as a rigid body.
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-y)+ Vi (21)Y0i" viO)-V~iNo0 -pp h( 2 r-) 1I NIV p (2r+1)

k ks(1i-')
S v+ 1 (22)-o -0 li Li21 k2 L V S i /t

In writing (22) the z components of particle velocity of the F(O) and

F(i) modes were not included since they depend linearly on yi, and

hence represent a rotation about the x i axis, which is not accounted

for in our approximation.

The particle velocity (20)-(22) of each plate end must be consistent

with translation of the triangular cylinder and its rotation about z, as

stated in equation (18). Equating like po-,ers of yi for each component

gives the equations

-jk s  -jk s

42=I+ I -j (23)- i N 0(2r-1) I i N(2r+1)

k

S.Iv =z -I (24)
-01i 0o ILI~ 'Si r-k

-1 1 (25)
Y-oi" -v-O d= VOi - 1+ V. (5N JA p ( -1(l) hNj/ -(2r+l)

kk(1-p) _ (26)
Y- VLi 2 t-Ipk2 L+ VS' t -tUp

Four equations can be obtained by substituting (23) into (25) and

using the relations

--*+ V" V (27. a)-2 -o -x, Vo -ol -O

-18-
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-E03 " o 25i " 0 - 2 o (27. b)

r-1/ 32  1 - -" Vo " Y-o"1 O (2 7. c)

Y-o3 *o 2 Sol 1 o '-2 -01 XZo1 
(27. d)

Also, (25) represents two equations relating the modal quantities, as
does (26). The eight equations so obtained are

0 2 (1 + 2 k2 + IV.-t 3?tL 2 Lf 1'' 2 2 S

+ V__ V,, 1 f , 1 1
L, ,--0 - 1 + jk d. ,go(+,, (2,3. a)[oVr - (?r ,) s N (2-r+ -

L3 22 (I L3 + -2

1 V.- 2) -- i r11! I jks d I(28.b)LN02r')'N (2rM ) 'ks -- -(2rl1

12 .00 1

r_3 -E +,o 0, V 12 + 1v,

Ft S' / or.--P 0(2 -9,+,- - (2r.I LiL I - I 2 2  1

+ 102 2 11

jk~d N~TTN
1

N(2(2r+)

2r + -(2 r+X . (28. c)

-A i 1s, 0-2
0 1  1 3 2 1 1]

ik dLO [42 101 + I +~1j(8d_,7
.... -. -. ,'7_ " " -- ,J- .. ... ........ . -



101 _ _ 102 1 (29)N 0 ( 2r) IN(2r+) (291

kkk k k
S V + = -v) z V + V2k L1 VSA L 2

k k

(l z ak-- V L3+ V $3(30)

2k 2  L 3 (30
L

2. Force and Torque Conditions

In addition to imposing continuity of velocity, which yielded the

foregoing six equations, we must require that the force and torque

about z on the cylinder vanish. A mathematical statement of vanish-

ing force is

3 t/2

Sf [x0 T T, (o1 y., z) + y0i Txy (0, yi, z) + z 0 Tx (0, yi 1 dy. = 0
_t/2 15j 

(3t1~ (31)

while the vanishing of torque about the z axis can be written

3 t/2

E f (-Old + yo, yi) x [aol Txx(0, yi, z)+ yol Txy(0, Y V z)l dyi = 0

i= -t/2 (32)

Substituting the modal quantities from the previous section into

(31) gives

-20-



3

i=I L) s

+ Yt 12(1-v) ,N0  N !

Fk 2k 2 - k 2+o z , -2 -LI + 2 ZS =0 (33)
s

Decomposing Xi, Yoi for i = 2, 3 along xi, Yoi we can write (33)

in component form as

o= - +( ]- I rT (VLI - VL2- VL 3 ) + k T (2 Vs-Vs 2 -s 3 )

_ _ _ 2 102",03 112"13 (34)
8 1i1 -V) NO N,

N0 kN2 1

-~ ( + 3t -- (Vs2 V 3
0 = [I+(i =v 1J2 (VLZ - VL 3 ) + - S 3

O'up k 2 -1 I 03 21 -i I3

+ (01 02 0 i 12 1j (35)24(1-v) -0 N /0 135

k 2k 2 _k 2

0 - E(I I +Iz s 1 Si + IS3) (36)=2 s L t + L 2  W L ) +  (S  S

s ks
a

Substituting the modal quantities into (32) gives

o -~~j l I, z- " J ' Woi
0=

1 2 (37)
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3. Scattering Matrix Representation

Equations (28)-(30) and (34)-(37) are twelve equations describing

the coupling between the twelve plate modes, four in each plate. Be-

cause of their complexity, we have chosen to use the equations to

generate a scattering matrix for the junction. To this end we express

the various voltages and currents in terms of the traveling-wave am-

plitudes a and b using (2) with x. = 0.
L

Let the ix4 matrices a. and b. be defined as-=I "-'

a si b bsi

aLi bLi

a. -b. (38)
aOi boi

a iL bii

After substantial manipulation, one obtains from (28)-(30) and (34)-

(37) equations relating the traveling-wave amplitudes in the form

ab

[A!+)1 A2 + [A!.)] b 2 0 (39)

3L 3

The i 2xI 2 matrices [A.. ] and [!-]are defined in Table I. From
(39), the I 2xi 2 scattering matrix S.. relating the a's and b's as

[b]- [Sij ] [a] (40)

can be expressed in the form

-22-



TABLE I

ELEMENTS OF THE i 2xi 2 MATRICES A.-] DESCRIBING PLATE MODE COUPLING

f

+ -m. -13m3 .5: ; 2-1  + o o 0 0 0

; rn (m 2 . ,m 3 , o 0 0 0 + 2m 1  +1 0 o

1. 3 t 
0 

/335

+ 2 4  m 3 5  0 0 2m 2 4 2m3 , 0 0 0 0

+ /7'1n; 2 m24 n3, 5  0 0 0 0 0 0 2m 2,4 2m 3, 5

------ -------------- -------------------------- --------------------------------------

n6  '0 0 + I + m 6  0 0 0 0
6 - -6 I

0 0 0 0 0 0 1 m 0 0 +I + mr6

7 k/k 0 0 '-i./ SL -k/k. 0 0 0 0 0 0

0 0 0 0 .1 SZ k./k 0 0 .- /z Z -kz/k Il8  0 0

--------------------------------------------------- -----------------------------
0 0 0 0 -rn -t rPm ; m -/ rn,[' 9

9I
O 07 2n' o2n 'Tm T - tin 8'm''9 " 7  " ./,

- I
I 1

z :R
ml "2-:s| k  2, 4 = 2No(2r-i ) [O k sj V"

I Up -Z7-m 6 = N 2r+i
W2,i(2r+I) T 3s =

k z S 
/8 T k:N(! -2

7  = 
8 2N -

km f +(I -V)k 2/ 2L 7 1, t +0 tvkkdiu kZ2]dL / 0

F p:t 2 2n 
k 2

2 
l

I02) d Ckldp Z jksd 7-0

2r i - 2k /ks) I + (Ik)
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S [A(:] [A(+)] (41)

Because the matrices [A ( - )] are complex, it is not useful to obtain

analytic expressions for the elements S of the scattering matrix.

Instead, we have written computer programs for the elements Aij

and then used a computer to carry out numerically the matrix mani-

pulations indicated in (41).

C. Propagation Perpendicular to the Cell Axes (k = 0)

For the special case when there is no phase variation along z,

the mode coupling equations (28)-(30) and (34)-(37) simplify. - In this

case the SH modes do not couple to the L, F(0) and F(I) modes. From

(30) and (36), it is seen that coupling between the SH modes in the three

plates is governed by the equations

VSI = VS2 = VS3
(42)

SI + IS2 + IS3 = 0

Conditions (42) for the modal voltages and currents can be interpreted

readily in terms of the interconnection of the equivalent modal trans-

mission lines. Since the voltage is the same on all lines and the cur-

rents sum to zero, this transmission line connection is as shown in

Figure 5, and is used subsequently to find the Bloch waves propagat-

ing in the honeycomb and polarized with particle motion along z.

While the coupling of the L, F(0) and F(1) modes is also simpler

for k = 0, it is still not obvious or useful to introduce equivalent cir-

cuits interconnecting the equivalent transmission lines. In this case

-24-



KS I ZS

K S , Z s

Figure 5. Equivalent network describing the coupling of SH modes
at a Y joint.
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it is still convenient to use the scattering matrix formation, where

-2, and b. are now Ix3 matrices obtained by dropping as, and bSi in

(39). Also [At)] and [A :) are 9x9 matrices, whose elements in

Table II can be obtained by dropping the first, fifth and ninth columns,

and seventh, eighth and eleventh rows of Table I. Also, the order of

the rows has been changed, which does not effect the value of the

scattering matrix.
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Table I I

Element of the 9x9 Matrices [Ai-) for the case k - 0
ij z

2 0 0 ~-1 + :-I +00 - ' 1 - 1

3 L 0  1 3 +jL 1  -3 1

o ~ 24 0 2 '3 0 k2 :3 52
- -o -- - - - 4 -- 2- - --- ---

x1 vS 2,4 /IX3,5 + 2X1 0 0 0 0 0
S I

+f11 2,4 -x3,5 0 -2x2,4 -2X3,5 0 0 0
I a

x- /3x 0 0 0 , +2X1 0 0

-) - 0 0 0 0 -2X -2X
1 2,4 3,5 2,4 3,5

0 +1 + 0 +1 + 0 0 0

0 0 0 0 + 1 + 0 + 1 +

LI
N0 2r-l Z0

N2r+lj ZO

L IN L ksa 
2 t 2

0,1 'N0 ,1 4/T

2r-v k t
P 2,4 2r-l - j  Z z 0

P3,5 - T [2r, - j

N 1 J2-+ + 2/3- Z

N0 2r-1i
1 NL 1-v ZL

+ - kt
X2, 4 ZL 2/T Z0

N 0 02r-1) 1 + j k t
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III. BLOCH WAVES POLARIZED ALONG THE CELL AXES FOR PROPAGATION PERPEN-

DICULAR TO THE CELL AXES

Because the SH plate waves do not couple to other modes at the Y junc-

tions, and because they are non-dispersive, the Bloch waves composed of

them have the simplest properties. We therefore consider this polariza-

tion first, in order to demonstrate the effects of the six-fold symmetry

on propagation characteristics.

A. Formal Solution for Dispersion Characteristics

Starting with the equivalent circuit for the Y junction, as depicted

in Figure 5, the equivalent network for a unit cell can be obtained. This

network is drawn in Figure 6 and is seen to consist of four ports at which

the voltages and currents Vi, Ii (i I - 4) are defined. The voltages and

currents can be related via an impedance mitrix. Because of the symmetry

of the network, this relationship takes the form

v1 Z11 z12 z13 z13 11

V2  Z 2  Z11  Z13  Z13  12 (43)

V3  Z13  Z13  Z11  Z12  13

V4  Z13  Z13  Z12  Z11  14
L4

By straightforward, but lengthy network analysis, it can be shown that

ZII, Z12 and Z13 are given by

1-10 tan 20 + 7 tan 4ZI " JZs  2 (44)6 tan e (Ztan 2-)

Z2 z =15 s cs2 (45)

12s 6 os8tan 8 (2tan28-1)

Z1 3  JZ s  4 2 (46)

6 tan 6 (2tan 2-1)
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with

e - k w/2 . (47)s

We now consider the terminal voltages and currents Vi and Ii to be

associated with a wave traveling through the core. Let

k = x k + Yoky (48)

be the wave vector of this wave. Also, let d I and d2 be the basic trans-

lation vectors of the periodic structure, as shown in Figure 2, and given by

d = 3 wx w Yo (49)

-1,2 2 -o + 2w

The Floquet assumption for periodic structures then implies the following

relation between the terminal voltages and currents

-jk . d2

V4 V2 e

-jk. d2

14=- 12-e

The minus sign before 1II and 1 2 is due to the assumption that the currents

are positive into the unit cell.

tions in terms of the four unknowns Vl, V 2) 1I and 1 2. Defining

-Jk d*

€I =-Ie

-J-jk • A2  (51)

-3 -
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the four equations may be written as

Zl 1- z13  Z12 - *2 Z1 3  -1 0 111

Z12 - *IZ13  Z11 - *2 Z1 3  0 -1 I1 (52)

z13 - 1 rZ 1 1  Z13 - 2z12 -*1 0 vI

Z13 - 1 Z1 2  Z1 3 - $ 2 Z1 1  0 -42 V2

In order for (52) to have a non-trivial solution, the determinant of

the 4x4 matrix must vanish. Setting the determinant equal to zero gives

the dispersion equation of the form

2 2 2 2 2
(Z2 3 -Zl 2 )Cos 6 + 2Zl 3 (Zl 2 -Zll)Cos 6 cos y + (Zll-Z13) = 0 (53)

where

(54)
3
- Wky

This equation may then be solved numerically for its root k as a func-x

tion of k and W or k as a function of k and w. The root correspondsy y x

to a wave in the core whose polarization is found from the eigen vector

associated with the root.

Because of the periodicity of the honeycomb, (53) will have multiple

solutions. Let u and u2 be reeiprckal lattice vectors

l,2 3w o + - 4o (55)

so that

i 2n 6ij (56)

-31-
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where 6.. is the Kronecker delta. Thus, if a particular wavevector k
1]

satisfies (53), then for any integers m and n the wavevector k + m u +

n u2 will also satisfy (53). Also, due to the hexagonal symmetry of the

honeycomb, a plot of k versus k for fixed w will have six-fold symmetryx y

about the origin.

B. Numerical Evaluation of Propagation Characteristics

Numerical computations have been carried out for the dispersion curves

k versus k for various fixed values of w. Because the SH wave velocityx y

is independent of the wall thickness t, and because the impedances of all

transmission lines in Figure 6 are the same, the results are independent

of t. In addition, if the normalized frequency variable e in (47) is used,

and the wave numbers k and k are multiplied by w/2, the computationsx y

will apply to all materials and honeycombs.

Due to the symmetry and periodicity of the honeycomb, the first quad-

rant in the k -k plane of the first Brillouin zone is more than adequatex y

to present the numerical results for the dispersion curves of k versusx

k . However, in order to explain the variation of the dispersion curvesy

with frequency we have sketched the curves for several Brillouin zones in

Figures 7(a), (b), (c). In Figure 7(a) we have indicated several reciprocal

lattice points by dots and the vectors u and u2 " The dashed hexagon

represents the first Brillouin zone. For low frequencies (0 << 0.6155),

the dispersion curve is very nearly a circle of radius Lj ! - /T e.

This value of LkI corresponds to a wave velocity for the Bloch wave that

is l/VT times the shear wave velocity of the honeycomb material. Because

-32-
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(a)

kS 10 k0

Figure 7. Reciprocal lattice points and slowness curves for normalized
frequency e 0k w/2: a) much less than 0.6155; b) Just
below 0.6155; and c) between 0.6155 and Yn/4 - 0.7854.
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of the periodicity, the near-circles centered about each reciprocal

lattice point are all locii of solutions of the dispersion relation, (53),

as discussed after (56).

As the frequency variable e increases to just below 0.6155, the near-

circular dispersion curves expand and distort into nearly hexagonal shapes,

as indicated in Figure 7(b). At e = 0.6155, the tips of the hexagons

touch. For 0.6155 < e < 2= 0.7854, the dispersion curves switch to being
4

nearly triangular and centered about the apexes of the dashed hexagon, as

shown in Figure 7(c). As e approaches rr/4, the dispersion curves shrink

to the points at the apexes of the hexagon. For 0 increasing above T-/4,

the change in the dispersion curves is reversed from that described above

until for 0 approaching T/2, the curves become nearly circular as in Figure

7(a). For 0 increasing above Tr/2, the variation of the dispersion curves

described above is repeated periodically with period T7/2.

The actual dispersion curves in the first quadrant of the first Brillouin

zone are plotted to scale in Figure 8, and are seen to be in agreement with

the discussion of Figure 7. One of the features of these curves that may

be important for NDE is the fact that in certain frequency ranges the waves

are cut-off along + x and the four other directions making angles of 600

to the + x axes. These cut-off directions are ones parallel to a set of

cell walls. However, the waves are never cut-off along y, and the six-

fold related axes.

In order to show the cut-off behavior for propagation along x, we have

plotted k as a function of w for the case k - 0. This plot is shown in

x y

-34-
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Figure 9, where k is real for 0 < e < 0.6155 and 0.9553 > 6 > /2.x

In the range 0.6155 < e < 0.9553, k is complex with real part given byX

Re(k x  ) - n/3. The curves are symmetric about 0 = n/ 4 . For 0 outside
x 2

the range plotted, the curves repeat with period r/2. By contrast, the

plot in Figure 10 of k H versus the frequency variable k - for propaga-S2s 2 frpoaa

tion along y does not show the presence of a stop band. The forward and

backward wave regions connect directly at 8 = n/4. Again, the curves as

a function of 0 repeat with period of iT/2.

The variations in the magnitudes of particle velocity and stress within

the unit cell is depicted in Figure 11 for propagation along x (ky 0)

and at a frequency just below cut-off. Because the fields are symmetric

about the center of the unit cell, it is only necessary to plot the fields

over one half of the cell. From Figure 11 it is seen that the center of

the unit cell is almost stationary but has a large stress, as compared to

points at the edges of the cell, for propagation along x. At the joint,

however, the stress on the center branch is close to the maximum value in

the cell. Note that the jump in stress at the joint is due to the fact

that stress on the center branch is the sum of the stress on the two

joining branches, and hence double that on Branch 1 for propagation along

x. The high stress at the joint would facilitate NDE inspection for

cracking at the joint, since a cracked joint would require stress to vanish

and hence would be a large perturbation. For frequencies well below cut-

off, IV, i and ITzxI are nearly uniform over the unit cell.
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IV. BIOCH WAVES POLARIZED PERPENDICULAR TO THE CELL AXES FOR PROPAGATION
PERPENDICULAR TO THE CELL AXES

As discussed in Section II, waves propagating the plane perpendicular

to the axis and polarized with particle velocity in the plane are composed

of L(O), F(0) and F(l) modes in each cell wall. Because of the number of

modes and the complexity of the equations describing their coupling at a

Y joint, it is not readily apparent how to represent the coupling by an

equivalent circuit, as was done for the case of particle motion along

the cell axis. Instead, the scattering matrix representation (40) is used

for the coupling. This representation is convenient since the necessary

matrix manipulations can be indicated symbolically, whereas the actual

evaluation is carried out numerically by a computer.

A. Formal Solution for the Propagation Characteristics

In order to facilitate the matrix manipulations, define the Ix3 column

matrices

albLi

Ai II, bb (57)

ai II

where the a's and b's are the traveling wave amplitudes in the i = 1, 2, 3

plate of Figure 3 evaluated at xi = 0. Recall that the subscripts L, 0, 1

refer to the L, F(O) and F(l) modes and that the a's are the amplitudes of

waves traveling in the -xi direction towards the junction, while the b's

are the amplitudes of waves traveling in the opposite direction. With

this definition, the scattering matrix S may be partitioned into 3x3

matrices Si as
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b2 = 3  S2  ]a2  
(58)

3b S2 §3  1 23

The three-fold symmetry of the Y junction is evident in the form (58) of

S. In addition, all S. are symmetric and the two matrices S2 and S3 are

the same except for the signs of the 12, 13, 21 and 23 elements. Because

the F(1) mode is cut-off rather than propagating, S is not a unitary matrix.

1. Scattering Matrix for a Unit Cell

Figure 12 shows a unit cell divided into two identical portions, each

consisting of three plates of length w/2 connected at a Y joint. The

numbering of the plates has been chosen for convenience in subsequent

analysis. If a' and b.' are the traveling wave amplitudes for the ith
-1 -L

plate at the end x = w/2, then

-i

h' = e'b ; a i ' 
= e aI  (59)

where e is the 3x3 diagonal matrix

-JkL w/2
e 0 0

0 e 0jk F w/2 (60)

0 0 e Fl

Defining the 9x9 matrix S' via the relation
S ' ' j

S1 N $ 0 0 e 0 0

St S12 0 e 0 0 e 0 (61)

S S S 0 0 e 0 0 e

L 2 -3 L -_ J-
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from (59) it follows for the left-hand half of the unit cell that

[ ] = S' a' (62)_2

Similarly, for the right-hand half of the unit cell

tb a_3[:]I =S'V i1 (63)

L

The two halves of the unit cell are coupled at the mid-plane T, where

the boundary conditions

Tx5x5 T = T (64-a)
55 6 x5Y5  x6 Y6

v 5 - v ; v = - v (64-b)x5  x6 5 Y

must hold. From (1), (2) and (10), the first condition in (64-a) and the

first condition in (64-b) are seen to imply for the L mode that

(b. + a5) = (b6 + aj6) 2
(65)

(b5 - aL) - (bh 6 - a 6)1

since g3 and q3 are the same for both plates. Because the wave propagating

in the + x 5 direction on plate 5 becomes the wave propagating in the - 6

direction on plate 6, and vice versa, (65) is satisfied if
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bL5 aL6 
(66)

a'5 bE6_

When considering the flexural mode F(0), the second conditions in (64-a) and

(64-b) are seen from (1), (2) and (12) to give

(b 5 - a055 = (b6 - a06) (67)

(b 5 + a 5) - (b;6 + a;6)

since g, and ql are the same for both plates. However, the first conditions

in (64-a) and (64-b) are seen from (1), (2) and (12) to give

(b0 5 + a 5)Y5 = (b06 + a66 )Y6  (68)

(b0 5  a0 5 )Y5 0-(b6 - a06Y6

Noting that Y5 = - Y6' it is seen that (67) and (68) imply that

b;5  - a0 6  , (69)

a05 b06

where it is recalled that the + x. traveling wave on one plate becomes the

- xi traveling wave on the other plate.

Similarly, for the F(l) mode

b15 a 16
(70)ai b6_

15 16-

Equations (66), (69) and (70) may be summarized as

b - T (71)

6 T a
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where

1 0 0

T = 0 -I (72)

0 0 -1

In order to join the scattering representations (62) and (63) using the

conditions (66), (69) and (70) to obtain the scattering matrix for the unit

cell, we write (62) and (63) in the form

b' 0 0 a2' 0

= +L V (73)b'S S' ' 0 S
-2 0 o ~- 1- 2 -3 - 3
bp 0 0 S ' a' 0 s'

-3 -3 ~

-4 -4

and

s2 03s aS 0 a'
=+ (74)

b 0 0 S' S'

-41

Substituting (71) into (74), we can solve for a' and a' in terms of a'
-5 -6 -1

a , and ' If this result is substituted into (73) we obtain the

scattering representation for the unit cell as

b' a'

. [uj 4 (75)

b' at
Z3 =

b' at

54 -4

Pi



where u is the 12x12 matrix given by

s' 0' 0 S; 0 I T s' S' o,--,1 ,.2 2 -3

SP0' -S' 0 0 S'

S; 3 0 0 s+ 0 2

S 0S 0

L0 0 S; L2 0 3

(76)

Considerable symmetry exists within the u matrix as a result of the

symmetry of the unit cell. The 12x12 matrix u may be partitioned into 3x3

submatrices and is found to have the form

Ul 22 u3 *4
v2 Vl v v3
2= 4 Z3 (77)

u3 Z4 ul 2

v I Z3 v2 Vl

In addition,

=Tv = T vi T (78)

and u2, , v2 andZ4 are symmetric while for i = 1, 3 the transposes of the

matrices ui, vi satisfy

2 (79)

These symmetry properties can be used to check intermediate numerical results.
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2. A lication ouet Condition
Consider now a Bloch wave traveling through the core and let

.t = x0 k x + t,0

be its wave vector The Floquet Condition requires that the (80)
traveling waves at the end of Plate 3 differ from the inward (outward) travel-ing waves at the end of plate I by the factor exp(-jk .dl), where dI is a
basis vector of the unit cell defined in (49). Because of the reversal of
coordinate systems, an additional negative sign enters for the flexural modes,as discussed after (64). Thus, the Floquet condition takes the form

-jkd '

=3- - 1

b - e T T '

-4~ -

-jk.d1

Simlarythe waves at the end of plate 4 can be related to those at the end

of plate 2 via

Jk-d 2  (82)z-4 - z-2

Using $I and *2' as defined in (51), to represent the exponential factors,
and substituting (81) and (82) into (75), one finds after suitable manipulation
that
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a'

a'(u2) 0 o(83)

In @3) u' and t are 12x12 matrices that may be partitioned into 3x3 matrices

in the form

u T 4  v v

-3 -l Z4 - 2

Tv . T v u 2  u

u- Z4 Z-3 -2 (84)
U u

Y2 vT 3T

and

1 0 0 0

0 22 0 0

0 0 11 0 (85)

0 0 0 1*2

where I is the 3x3 unit matrix.

In order for 033) to have non-trivial solutions, it is necessary that

det(u' -,J) - 0 , (86)

which is the dispersion equation for the Bloc), waves. Because the ele-

ments of u' depend on frequency andt contains the wavenumbers k. and ky,

(86) is an equation of the form f(w, k , ky) - 0, and can be solved for any
X)y

one variable in terms of the other two. In practice, the equation is solved
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numerically using a root search procedure. Numerical aspects of the solu-

tions are discussed below.

B. Numerical Evaluation of the Propagation Characteristics

Computations were made for a honeycomb material having Poisson's ratio

v = 0.32, which is the value for phenolic plastic cores, and a ratio w/t = 20.

With these ratios fixed, the normalized wavenumbers k w/2 and k w/2 willx y

depend on the shear wave velocity C of the honeycomb material only throughs

the normalized frequency variable k w/2 = C w/2w. At very low frequencies,

two propagating waves are found. One of these waves has velocity of propa-

gation 0.862 C that is independent of the direction of propagation. Thes

second wave has velocity of propagation that varies from 0.059 C to 0.062 Cs s

as a function of the direction of propagation. The 5% variation in the calcu-

lated velocity is not thought to be meaningful, so that at low frequencies

the propagation is isotropic in x-y plane. The two waves are referred to as

the fast and slow Bloch wave solutions, respectively. For comparison, recall

that at low frequencies the Bloch waves with particle motion along z

propagate with velocity 0.707 C . For convenience, we refer to the Bloch wave

with particle motion along z as the Q-SV (quasi-shear vertical) wave. The

properties of the fast and slow Bloch waves are discussed separately below.
1. Fast-Wave Solution

The wavevector or slowness curves corresponding to the fast-wave solution

are depicted in Figure 13. As discussed in connection with the Q-SV waves, the

portion of k x-ky space shown in Figure 13, which is the first quadrant of the

first Brillouin zone, contains all of the information concerning the solutions

of (86). The six-fold symmetry of the dispersion curves about the z-axis is
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Figure 13. Slowness curves in the first quadrant of the first Brillouin
zone for the fast Bloch wave for various values of normalized
frequency k w/2 within the first pass-band (w/t 20, v - 0.32).
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evident from the plots for the first quadrant, and is consistent with the

hexagonal nature of the core. The normalized frequencies in Figure 13 lie

in the first pass-band of the fast-wave.

The dispersion curves for propagation along x and along y, as well as

their six-fold related directions, are shown in Figures 14 and 15. Above

the first pass-band, the dispersion curves for propagation along both x and

y consist of a complex set of stop bands and pass-bands that are not periodic

with frequency, as in the case of SH waves. The non-periodicity results

from the fact that the Bloch wave is composed of F(O) and F(l) plate modes,

in addition to the L mode. Furthermore, the F(O) plate mode is dispersive,

the coupling at the Y joints is frequency dependent, and the interaction

between Y joints due to the F(1) mode decreases exponentially with the square

root of frequency. The complexity associated with higher stop and pass-bands

is discussed in connection with the slow-wave solution.

As the frequency increases from zero to the first stop band, the slow-

ness curves of Figure 13 behave in a fashion similar to those of the SH

wave, Thus, the curve changes from being circular about the origin to a

figure that is slightly elongated along kX, and six-fold related axes. At

the normalized frequency ksw/2 - 0.2735, the slowness curve touches the bound-

aries of the first Brillouin zone along kx and related directions. In the

range 0.2735 < k w/2 < 0.275, the slowness curve becomes a series of closed

shapes about the apexes of the Brillouin zone,
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While the fast Bloch wave has low frequency velocity greater than the

Q-SV Bloch wave, it has a lower cutoff frequency for propagation along x and

a cutoff band for propagation along y. In Figure 16 we plotted the normal-

ized wavenumbers of the L, SH and F(O) plate modes, as well as the longitu-

dinal wavenumber k of the honeycomb material versus normalized frequenciesP

k w/2 for w/t = 20. Were the fast Bloch wave to be composed solely of the Ls

mode in the plates, at low frequencies, one would expect the fast Bloch wave

velocity to be about 1.7 times that of the Q-SV Bloch wave; the value 1.7 being

the ratios of the L mode to SH mode velocities. That the fast Bloch wave is

only 1.2 times that of the Q-SV Bloch waves is therefore due to the presence of

flexural waves. The coupling between F(O) and L modes increases with frequency,

so that the phase shift due to the very slow F(O) mode becomes more significant

in the Bloch wave at higher frequencies. This is believed to explain the rapid

increase in dispersion above k w/2 = 0.20, and a value of cutoff frequency below
S

that of the Q-SV Bloch wave.

In tracing the higher stop and pass-band behavior for propagation along x

it was found that the first branch of dispersion equation became complex, as in

Figure 14, and did not connect to the higher pass-band solution. The second

pass-band results from a second branch of the dispersion equation, which is

imaginary for frequencies below k w/2 = 0.341. For propagation along y, the
5

same branch of the dispersion equation connected from the first to the second

pass-band. The double solution for k in the vicinity of k w/2 = 0.6 indicatesy s

that the slowness curves for these frequencies consist of several disconnected

curves, and are probably quite complex. We have not however computed the shapes.
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ilhe particle motion assoiatted with the fast Bloch wave is depicted in

Figures 17 and 18 for wave propagation along x and y, respectively, and a

normalized frequency k w/2 
= 0.2. These curves show, in exaggerated scale,

the actual displacement of points along the center linu of the plates at

some instant of time. While the motion is different for the two directions

of propagation, in each case it is symmetric about a line that is parallel

to the direction of propagation and that divides the unit cell in half. In

addition, the center of gravity of the unit cell appears to move back and forth

in the direction of wave propagation. Because of this motion, the fast Bloch

wave resembles a longitudinal wave in an elastic continuum, and will be re-

ferred to as the Q-P (quasi-longitudinal) wave.

2. Slow-Wave Solution

The slowness curves corresponding to the slow Bloch wave are depicted

in Figure 19 for frequencies below the first stop band along y. The cor-

responding dispersion curves for propagation along x and along y are shown

in Figures 20 and 21, respectively. It is seen that the behavior of the

slowness curve is similar to that in Figures 8 and 13 for the Q-SV and Q-P

Bloch waves. However, the anisotropy effects are much more pronounced and

the normalized frequency k w/2 for corresponding curves is an order of magni-

tude lower.

The difference in frequency can be understood by referring to the dif-

ferences in the wavenumbers of the various plate modes, as shown in Figure 16.

Over the ordinate range 0 < k0 w/2 < 1.0, the flexural wavenumbe is more than

20 times larger than the shear wavenumber. If the slow Bloch wave were composed

solely of the F(O) mode in the plates, one would expect its slowness curve at
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Figure 19. Slowness curves in the first quadrant of the first Brillouin
zone for the slow Bloch wave for various values of normalized
frequency k sw/2 within t-he first pass-band (wit - 20, v -0.32).
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frequency fI to have a shape similar to tha- of the Q-SV Bloch wave at frequency

greater than 20 f However, the frequency ratio is somewhat less than 20

due to the presence of the L and F(1) modes.

As the frequency increases from zero to the first stop band for propa-

gation along x, the shape of the slowness curves of Figure 19 changes from

circular about the origin to a figure that is elongated along k , and six-fold
X

related axes. At the normalized frequency k w/2 = 0.0316, the slowness curveS

touches the boundary of the Brillouin zone. In the range 0.0316 < k w/2 < 0.0671,s

the slowness curve breaks into a series of closed curves about the apexes of

the first Brillouin zone. These curves shrink to a point at k w/2 
= 0.0671.S

For frequencies in the range 0.0671 < k w/2 < 0.112, the Bloch wave isS

evanescent for all directions of propagation in the x-y plane.

The particle motion associated with the slow Bloch wave in the first

pass-band is depicted in Figures 22 and 23 for propagation along x and y

respectively at normalized frequency k w/2 = 0.03. In these figures we5

have plotted, at an exaggerated scale, the actual displacement of the

centers of plates comprising a unit cell at a particular instant in time.

From Figure 22, it is seen for propagation along x the motion is almost trans-

verse to the direction of propagation. From Figure 23 it is seen that the

motion for propagation along y is anti-symmetric about a plane through f-he

center of the cell and parallel to y, and has a strong shear component. On

the basis of cell motion, we can identify the slow Bloch wave at low fre-

quency as a shear wave in an elastic continuum, and will refer to it as the

Q-SH (quasi-shear horizontal) wave.

For frequencies above the first pass-band, the dispersion curves of

Figures 20 and 21 exhibit a complex series of stop bands and pass-bands, which

are not periodic in frequency. For the case of propagation along x, a single
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solution to the dispersion equation, which can be traced continuously as a

function of frequency, gives the wavenumber k of propagating waves. How-

ever, for propagation along y it is necessary to trace two solutions to the

dispersion relation. The first solution gives the propagating wavenumber ky

in the first pass-band 0 < k w/2 < 0.0671, while the second solution is cutoff

there. At k w/2 = 0.112, the second solution switches from cutoff to propa-

gating, i.e. k becomes real, and remains so until k w/2 = 0.185. However,y 5

at k w/2 = 0.178, the first solution again becomes real, but corresponds to
5

a solution in a Brillouin zone above the first zone in the k -k plane. Atx y

k w/2 = 0.185, the two solutions are real and equal. For k w/2 above 0.185,

the two solutions diverge, one corresponding to the higher Brillouin zone

and the other to the first Brillouin zone.

The foregoing dispersion characteristics can best be understood by

examining the slowness curves as drawn for a progression of frequencies about

k w/2 = 0.185. As k w/2 increases from k w/2 = 0.112, the slowness curve

starts as a circle, as shown in Figure 24, whose radius increases with fre-

quency. The shape of the circle distorts with increasing frequency until the

slowness curve touches the boundary of the first Brillouin zone at k w/2 =
s

0.178, as shown in Figure 24. Because the slowness curve touches the boundary

at intermediate angles, rather than along the k and related six-fold axes,x

for frequencies above 0.178 it takes the form of closed curves about the

vertices of the Brillouin zone and about the points k x ir/3, k = 0 and six-x y

fold related points. In the range 0.178 < k w/2 < 0.185, the closed curves
S

about the vertices shrink to a point, and then expand above 0.185. The closed

curves about k - TT/3, k - 0, and related points, decrease in size in the
x y
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Figure 24. Slowness curves in the first quadrant of the first Brillouin
zone for the slow Bloch wave for normalized frequencies in
the range 0.112 < k Sw/2 < 0.185 (w/t - 20, v - 0.32).
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range 0.178 < k w/2 < 0.188. For k w/2 between 0.188 and 0.207 no real solu-s s

tion for k exist, as is seen from Figure 20.X

The closed curves about the vertices of the Brillouin zone expand in size

for k w/2 > 0.185, as seen in Figure 25, until they touch the k and relateds x

axes at ks w/2 = 0.207. Above 0.207, the slowness curve is again a closed

curve about the origin, whose radius decreases with frequency to zero at

k w/2 = 0.0342. The foregoing discussion illustrates the complex dependences

of the Bloch wave properties on frequency in the higher pass-bands.
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Figure 25. Slowness curves in the first quadrant of the first Brillouin
zone for the slow Bloch wave for normalized frequencies in
the range 0.185 < k 3w/2 < 0.341 (w/t -20, v 0.32).
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V. BLOCH WAVE PROPAGATION OBLIQUE TO THE CELL AXES

For propagation oblique to the cell axes, the scattering matrix

for the Y joint is I 2xi 2 and the matrices a and b. are 1x4, as de-

fined in (38). With this recognition, the matrix algebra needed to

find the propagation characteristics of the Bloch wave is the same as

that developed in Section IV, provided the matrices defined there are

appropriately generalized. Thus, the matrices S i in (58) that are

used to partition S are 4x4, as are the matrices S.' in (61). The e

matrix defined in (60) must be generalized as

-J~csw/ 2
e 0 0 0

0 j KLw/2
e 0 0

£ = (87)
-JICow/ 2

00 e 0

-jj Kw/ 2

0 0 0 ejKIw2

where KS L L K0 and K, are the modal wave numbers along x, as

defined in (7), (9), (1i) and (15).

Because the SH mode is symmetric, it has the same junction pro-

perty (66) as the L mode so that the T matrix defined in (72) becomes

1 0 0 0

0 1 0 0
T =(88)

0 0 -I 0

0 0 0 -1
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Finally, in the . matrix of (85) one must use the 4x4 unit matrix for

I and recognize that

"j, 2 = exp[-J(xokx+Yoky) d1,2]. (89)

The wave number k is contained in the scattering matrix S and

hence in u', so that the dispersion equation (86) is of the form

f(w, k x k, k z ) = 0. In the rest of this section we report on numerical

solutions of the dispersion relation for k vs. k with k = 0 and fixedx z y

values of w0, and for k vs. k with k = 0 and fixed values for w.y z x

These results, together with those of the previous section, indicate

the shape of the slowness surface by means of cuts in the (k , ky)

plane, in the (kx, kz) plane and six-fold related planes, and in the

(ky, k z) and six-fold related planes. Calculations were carried out for

a honeycomb material having Poisson's ratio v = 0.32 and for cell-

wall aspect ratio w/t = 20.

A. Low Frequency Propagation: Continuum Model

For normalized frequencies below about k w/2 = 0.01, all of the

Bloch waves propagating in the (kx, k y) plane show linear variation

of k x and k with w0, and hence are non-dispersive. We have there-

fore computed the slowness curves for ksw/ 2= 0.01, and plotted

kz/k s versus k x/k or k y/k s . The resulting curves are independent

of frequency for ksw/ 2 < 0.0t.

In Figure 26 we have plotted the slowness curves for the two

fastest Bloch waves. The same numerical values were obtained for

propagation in the (x, z) plane as for propagation in the (y, z) plane.

The inner curve is a quasi-longitudinal wave (Q-P), as noted from
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the particle displacerrent for propagation along x and y. Also, for

propagation along z, the value k z k s = 0. 59 is the same as for the

wavenunber k L of the symmetric Lamb mode in the cell walls, which

is essentially an extensional or longitudinal wave at low frequencies.

Based on the polarization properties for propagation in the (x, y) plane,

the outer curve in Figure 26 represents a vertically polarized shear

wave (Q-SV). The fact that the intersection of the curve with the

k /k or k /k axis and with the k /k axis have the same values

(i)(41) indicates that the honeycomb acts as an elastic continuum

Because the slow Bloch wave travels at one tenth the velocity of

the fast Bloch waves in the (x, y) plane, its slowness curve cannot be

drawn with equal scales for kx and kz, as in Figure 26. For this

reason we have drawn the dispersion curves with different scales in

Figure 27. The slow Bloch wave is labeled Q-SH because its parti-

cle motion is similar to horizontally polarized shear wave for propa-

aation along x or y. The discrepancy between the slowness curves

for propagation in the (x, z) planes and (y, z) plane amounts to 2. 5%

i *s thought to result from the approximations used to compute

''. ... it is seen that both shear waves cross the k axis at thez

nt, in accordance with the properties of a hexagonal ntin-

examine further the correspondence between the slow-

F ,W'.res 26 and 27 and an elastic continuum of hexa-

.e have used the propagation characteristics along

define the stiffness constants of the continuum.

'he slowness curves for continuum were corn-
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puted and compared with those of Figurea 26 and 27.

Static measurements of the mass density pH and stiffness con-

stant C33 for a WRII kraftboard honeycomb (1 2 ) , as listed in Table

III, were used in conjunction with the properties listed in Reference

(it) to find the remaining stiffness constants, which are listed in

Table III. The mass density p of the kraftboard listed in Table III

was obtained by dividing PH by the fraction of honeycomb's volume

occupied by the phenolic material. Assuming the kraftboard act as an

isotropic medium with v = 0. 32, and recognizing that kz for the Q-P

wave propagating along z is equal to kL, p can be found from the re-

lation

Knowing 11 and v, one can find X from the expression

V -(k+T)

for Poisson's ratio. These values are also listed in Table III.

The average of the values of kx / k s was used in obtaining C 6 6

in Table III. With the values listed in Table III, we have computed

the slowness curves for a hexagonal continuum and compared them

with Figures 26 and 27. The Q-P and Q-SV curves were indistinguish-

able, while the Q-SH curve fell between the k vs. k and k vs. kz x z y

curves of Figure 27. We therefore conclude that the continuum model

is an accurate representation for the honeycomb at low frequencies.

It should be noted that for a WRU kraftboard honeycomb, the nor-

malized frequency k w/ 2 = 0.01 corresponds to an actual frequency
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TABLE IfI

MATERIAL CONSTANTS FOR A WRII KRAFTBOARD HONEYCOMB

Kraftboard Honeycomb

p = 0. 899 gm/cm 3  PH = 0. 061 gm/cm

v= 0.32 C 3 3 
= 3. 79xi0 9 dyres/cm 2

3. 38x10 dyne/cm C = 9. 75x10 8

k= 1.9x10t 0  C 1 2
= 9.66xi0 8

C13 5.94x10
8

C44 6.60x10
8

C 4.60x10
6

66'
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f 30 Hz. For higher frequencies, the Q-SH wave becomes disper-

sive, while the Q-P and Q-SV waves do not exhibit dispersive effects

until a frequency of nearly 10 KHz.

B. Dispersive Effects for the Slow Bloch Wave

To illustrate the dispersive effects on the slow Bloch wave we

have computed slowness curves for k sw/2= 0.03, 0.06, 0.13 and 0.26.

The results for ksW/ 2 = 0. 03 are plotted in Figure 28. The extent

of the curves along k and k is markedly different. In the insertx y

of Figure 28 we have sketched a perspective view of the slowness

surface in the first Brillouin zone. The surface is seen to have the

shape of a six-pointed star. Slowness surfaces in the neighboring

Brillouin zones have the same shape, and oriented such that the

points of the stars face those of the star in the first zone.

As the frequency increases from 0. 03, the tips of the stars in

neighboring Brillouin zones grow towards each other until they touch

at 0. 316 and form tunnels for frequencies above 0. 316. The tunnel shape

is indicated in Figure 29, which is drawn for ksw/2 = 0.06. As the

frequency increases further, the tunnels increase in width until they

merge at 0. 071 when the wave becomes cut-off along y, as indicated in

Figure 21. For frequencies between 0. 071 and 0. 112, where the second

pass band starts, the slowness surface in (kx, ky, k z) space undulates

but does not touch down to the (k x, k y) plane.

The slowness surfaces of the slow Bloch wave in the second pass

band consist of two surfaces. The outer surface does not touch the

(k x, ky), while the inner surface in the first Brillouin zone is closed

about the origin. Identical closed surfaces exist in each of the
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Brillouin zones. The intersections of these surfaces with the (kx, kz

and (k y, k z ) planes are shown in Figures 30 and 31 for ksw/2 = 0. 13.

The outer and inner surfaces touch in the (k y, k z ) plane and six-fold

related planes. The touching points are like the points of conical

refraction in the optical slowness surfaces of a biaxial crystal. The

surfaces for k z > 0 may be thought of as a head (inner surface) with a

hat (outer surface) that rests on the head at six points.

As an example of the slowness curves in the third pass band of

the SH-Bloch wave, we have drawn Figures 32 and 33 for kswi2 = 0. 26.

Slowness curves for propagation in the (x, z) and six-fold related planes

are indicated in Figure 32, while Figure 33 has been drawn for propa-

gation in tIe (y, z) and six-fold related planes. The Q-SH slowness

surface is seen to consist of two parts. The upper part represents

an undulating surface that does not touch the (k x , k y) plane. The lower

Q-SH slowness surface resembles a tube enclosing the boundary of

the Brillouin zone. The character of the slowness curves for the fast

Bloch waves is discussed in the next section.

C. Dispersive Effects for the Fast Bloch Wave

As seen from Figures 9 and 10, the Q-SV Bloch wave propagat-

ing in the (x, y) plane does not have significant dispersion for

ksw/ 2 < 0. 4. The Q-P Bloch wave propagating in the (x, y) plane how-

ever shows significant dispersion even at ks w/ 2 = 0. 2. For oblique

propagation the dispersive effects should be evident in both waves,

even at frequencies as low as ksw/ 2 = 0. 2, since both waves, are

composed of the same plate modes in the honeycomb walls.
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Figure 30. Slowness curves in the (kx,kz) plane for
frequeucy k w/2 - 0.13 in the second pass-
band of the Q.-SH Bloch wave showing the
presence of a fourth surface (w/t 20,
v -0.32).
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Figure 32. Slowness curves in the (kx,kz) plane for frequency
k w/2 -0.26 in the third pa~ss-band of the Q-SR
Bloch wave (wit - 20, v - 0.32).
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ksw/2 -0.26 in the third pass-band of the Q-SH Bloch
wave (wit. 20, v -0.32). This figure is for the
same frequency as Figure 32.
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The nature of the dispersive effect can be understood by exam-

ining propagation for frequencies in the vicinity of k \w 2 = 0. 21 6,5

where the wavenumbers of the Q-P and Q-SV Bloch waves propagating

in the (x, y) plane are equal. The slowness curves of the Q-P and

Q-SV Bloch waves are drawn in Figure 34 for ksw, 2= 0. 21. Because

anisotropy effects are not significant at this frequency, the same

curve holds for propagation in the (x, z) plane and for propagation in

the (y, z) planes. Comparing Figure 34 with Figure 26, which is

drawn for k-w/2= 0.01. it is seen that the Q-P wave shows disper-
s

sive effects for propagation in the (x, y) plane. However, for propa-

gation along z, the Q-P wave shows no dispersion since its wave-

number is that of the symmetric Lamb wave in the cell wall. For

thLs direction of propagation it is the Q-SV wave that exhibits disper-

sive effects.

At the frequency ks w/ 2 = 0. 23, the slowness curves shown in

Figure 35 reflect the fact the wavenumber of the Q-P wave propagat-

ing in the (x, y) plane is greater than that of the Q-SV wave. However,

for propagation along z, the relative size of the wavenumbers is re-

versed. Thus, along the inner branch of the slowness curve in Figure

35 the Bloch wave polarization switches from that of a shear wave

propagating in the (x, y) plane with particle motion along z to that of a

longitudinal wave propagating along z. Alternatively, the outer branch

has the polarization of a longitudinal wave for propagation in the (x, y)

plane, since then the SH plate modes are not part of the Bloch wave.

However, for propagation along z, the outer branch has shear

polarization.
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Thus, in the first pass band of the fast Bloch waves, a significant

aspect of the dispersion is to cause the polarizat ion type of the wave

to change with direction of propagation. As a result, the Bloch waves

cannot be labeled as a quasi-shear or quasi-longitudinal for frequencies

above ksw/ 2 = 0. 216. This conclusion is further supported by the

slowness curves for the fast Bloch waves at the frequency ksw/ 2 = 0. 26,

which are shown in Figures 32 and 33. From Figures 30 and 31 it is

seen that the dispersion of the fast Bloch waves first becomes significant

at ksw/2 = 0. 13 for shear wave progagation along z.

Because the fast Bloch waves do not show significant dispersion

for normalized frequencies below ksw/ 2 = 0. 13, their propagation

can be modeled by that of Q-P and Q-SV plane waves in a hexagonal

continuum for ksw/ 2 < 0. 13. However, the continuum model can be

used for Q-SH wave propagation only in the range ksw/ 2 < 0. 013.

Thus, in dealing with bounded honeycombs, the continuum model can

be used for ksw/ 2 < 0. 013 unless Q-SH waves are not excited, in

which case the continuum model can be used up to ksw/ 2 = 0.13. This

distinction is used in the next section.
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VI. WAVES GUIDED BY A FACE PLATE BONDED TO A
HONEY COMB

A complete treatment of wave propagation in honeycomb panels

requires taking into account both of the face plates and the finite

honeycomb thickness. The properties of these waves result from a

combination of effects due to coupling between the face plates and

the honeycomb, and to the thickness of the honeycomb. However,

for the NDE task of finding -areas of debonding, one is only interested

in coupling between the face plate and honeycomb. This coupling can

be studied in'isolation by examining the loading that a semi-infinite

honeycomb places on the modes of the face plate.

In this section we consider the properties of the lowest modes

guided by an aluminum face plate that is bonded to a semi-infinite honey-

comb, as shown in Figure 36. The honeycomb is assumed to act as

a hexagonal continuum having the parameters listed in Table III for a

Shelter Core honeycomb. The face plate is assumed to have thickness

h = 1/16 in. and to be bonded to the honeycomb by means of an ad-

hesive layer of vanishing thickness. However, in practical cases the

adhesive layer can have major influence on the guided wave, as is

shown in the next section for foam-core panels.

The SH mode in the aluminum plate couples to the slow Q-SH

Bloch wave in the honeycomb. However, both the symmetric Lamb

mode and the flexural mode in the aluminum plate couple to the fast

Bloch waves. Thus we may treat the SH modes separately from the

Lamb and flexural modes.

The Q-SH Bloch wave is non-dispersive for k sw/2 less than about

O, 013, using the dimensions assumed for the Shelter Core honeycomb

-88-#ii.



0.. 04

Li

i

Li0.

01 0

(U 0

ba

-89- 4



gives an upper frequency limit of about 1, 000 Hz. Thus our study

for guided SH waves in the aluminum plate is limited to frequencies

less than 1, 000 Hz. On the other hand, the fast Bloch waves are

non-dispersive for ksw/ 2 < 0.13 or f < 10 kHz, so that the continuum

model for the fast Bloch waves may be used up to this frequency.

Hence, our study of the symmetric Lamb and flexural modes of the

aluminum plate apply up to 10 kHz.

A. SH Mode of the Aluminum Plate

The fields associated with the SH mode in the aluminum plate can

be represented as a combination of the SH plane waves in aluminum

propagating with wave vectors (kx + k'Zs ) where

= !(V ) 2 -k 2  (90)zs x

and ki is the shear wavenumber of aluminum. The wavenumber k
s x

along x must be the same for both plane waves, and for the Q-SH Bloch

wave in the honeycomb in order to satisfy the boundary conditions at

the free surface and at the plate-honeycomb boundary. The field quan-

tities entering into the boundary conditions at z = + h/ 2 are v z and

T yz . If A+ and A- are the amplitudes of these two waves, then the

field quantities in the plate are given by (3

+ -jk z jk'sz -jk x
vy(x, z) = + Ae ) e x (91)

and
+.Aje z jk' z jk x

T (x, z) = 8 (-A. + Ae zs) e X (92)

where , is the shear modulus of aluminum.
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If D" represents the amplitude of the Q-SH wave in the honeycomb,

then the field quantities for z < -h/2 are

vy(x, z) = D e j k Zz e (93)

and C k jkzz -jkx

T yz(X , z) Z C44 D-e z e (94)

Here C44 is the stiffness constant listed in Table III and k is the

wavenumber along z of the Q-SH wave. Using the continuum model for

the honeycomb, kz can be found from the dispersion equation

C 6 k 2+ C 4 k _ple 2 = (95)c66 X c44 2 - 0zs

where p. and 6 are taken from Table III.

The boundary condition at the free surface z = h/2 is Tyz (x, h/ 2) = 0,

while at the interface z = -h/ 2 we have that v y(x, z) and Tyz (x, z) are

continuous. After some manipulation, these conditions can be written

in the form

"jk'sh It'
-e a ,A +

_l e ---- e ----

* I

jk o_ h s -3k h/2 jk2 h/2 h
- " "- --s -- e ° A' --. 0 (96)

j66kz  -jkz ak o DJ

The dispersion equation for the wave is obtained by setting the deter-

minant of the 3x3 matrix equal to zero. Recognizing that k and k 'zs

are functions of kx , the dispersion equation takes the form f(k,.w) = 0.
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Because the Q-SH Bloch wave is extremely slow, for k in thex

vicinity of ks, this Bloch wave will be propagating along z. As a

result, the SH mode in the aluminum plate will be converted into a

leaky surface wave that radiates its energy into the honeycomb. The

continuous radiation of energy causes an exponential decrease in the

amplitude of the surface wave with distance in the propagation direc-

tion. The exponential decrease exhibits itself as an imaginary part

in the wavenumber kx of the surface wave. Thus the root of the dis-

persion equation f(kXO) = 0 is the complex number k = 0 - ja, whereX

3 is the phase constant and a the attenuation constant of the leaky

surface wave.

Numerical solutions of the dispersion equation for /3 and a are

plotted in Figure 37. The leaky wave is somewhat slower than the SH

wave in an isolated aluminum plate. Because a and are on the same

order, the wave is heavily attenuated even in propagating one wave-

length. Thus, the coupling to the honeycomb strongly affects the wave

in the aluminum plate. In principle, the significant perturbation re-

sulting when the plate is bonded to the honeycomb makes possible detec-

tion of debonded regions. However, the wavelength at i KHz is 2. 4

meters, which indicates that only large areas could be inspected. To

achieve high resolution, it is necessary to use much higher frequency

waves, for which the continuum model of the honeycomb is not valid.

B. Lamb Modes of the Aluminum Plate

When treating the symmetric and anti-symmetric (flexural) Lamb

modes, it is necessary to include SV and P plane waves in the plate

that have components of propagation in the +z direction as well as in

-92-
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Figure 37. Attenuation constant cr and propagation constant 0 of
the SH leaky wave guided by an aluminum face plate
bonded Co a semd-infinite honeycomb.
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the -z direction. The fields in the honeycomb are composed of the

Q-P and Q-SV Bloch waves propagating in the -z direction. The am-
+ +

plitude of these six waves are designated as A-, B-, C' and D- in

Figure 36. The boundary conditions on vx, vz, Txz and Tzz at

z + h 2 requires that all of the plane waves have the same wave-

number k along x. By requiring that the plane waves satisfy thex

boundary conditions, one obtains the dispersion equation for the guided

waves.

1. Formal Solution for the Guided Waves

The fields in the plate are given by the sum of four plane wave

constituents. The particle velocity is given by(3 )

Vx(X, z =[A+e j k z s z + A-ejk z sZ

+ - B B+e + B'e zP e (97)
kp.

and

vZ)= k{ X [A+e -jzs - Ae sZz j

+ !! 
!.~-k

k--- B'e jz e - x(98)

Here

k (ks) 2 k f k (99)
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where k' and k are the wavenumbers of the shear and longitudinalS p
waves in the aluminum. The components of stress entering into the

boundary conditions are

" Z' 2 _ k2 A +  -jkzsZ jkzsZTx ,z)= [(k x e - Ae Zzs I j

k k -jkzpz "e z -jkx
ZP BeP je(102p (k) 2 I B'e - B e (to0)

p L

z jk
"zz (x, Z) 4= z +5 A-e

Pk jk z ] "jk x

- + 2u e + B-e zp e x

(101)

where X is the Lame coefficient of the aluminum.

To obtain the fields in the honeycomb, we make use of the pro-

perties of a hexagonal continuum t 3 ) Thus, the wavenumbers k
zs

and kzp of the Q-S and Q-P waves can be found from the dispersion

equation

(C +k 2 +C C 2 _ pW 2 )(C k 2 +C3k 2 _-P 2
Itjx 44 z 4 4 x 33 z PH )

"(C + C ) 2 k 2 k 2 = 0. (102)13 44 x z

The components of particle velocity are

- Aj' z + jk-e z.k -jkxvx(x, z) = [C + De Jz] e (103)
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and

[ Jk z D eJk z 1  Jkx

vz(x, z) C-6e zp +Dye e (104)

where

CI k2+k 2  2

Y 1 1  + C 4 4 k s'PH(1

y (C 1 3 + C 4 4 )kk (105)

and

6= (C t3 + C 4 4 )kxk (t 06)
C k 2+C k P 2

44kx 33 zp PHw

Finally, the components of stress entering the boundary conditions can

be found from

C 4 4 rjk z
T (xz)= [C-(-kx6+kzp

xzW

+ D(-kxy+kzs)e j k z s z ]eJkxx (10.0

and
C 3 3  r C 3 jk zTn Tz(x'Z)= - C - (-kx _-- +kzp 6 ) e k p

+ D(-k 3C3 + kzsy) ejk zsze -jkX (108)

The boundary conditions at z = h/ 2 require that Txz(x, h/ 2) and

T zz(x, h/ 2) vanish. At the interface z = -h/ Z the velocity components

v x(x, -h/ 2) and v z(x, -h/2) together with the stress components

T xz(x, -h/ 2) and T zz(x, -h/2) must be continuous, These conditions

take the form of six homogeneous equations in the six unknown

-96-
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amplitude coefficients. These equations can be written in the form

A+eJkzsh/2

-jk zsh/2
A e

B+ ejk zph/ 2

B eLi] -jk Ih/2 0 (109)

Be zp

C"e-jk zph/2

D -jk zsh/2

DLe

where the 6x6 matrix L is given in Table IV. The elements in the

matrix depend on w and k . Hence, setting the determinant of L

equal to zero in order for (i09) to have non-trivial solutions, gives

the dispersion equation for the guided waves in the form f(kx, W) = 0.

2. Numerical Evaluation of the Dispersion Characteristics

Results obtained for the dispersion characteristics of the leaky

Lamb mode are summarized in Figure 38, where we have plotted the

phase constant 0 and attenuation constant a as a function of frequency.

For comparison we have also plotted the wavenumber k' of the sym-

metric Lamb mode of a free aluminum plate. It is seen that the honey-

comb slows the wave so that 0 > k'L and causes it to radiate or leak

into the honeycomb. The attenuation becomes constant with frequency

above 2KHz and corresponds to a l/e attenuation length of 0.8 m. At

10KHz, the wavelength 2r/P = 0.56 m, so that wave is strongly attenu-

ated per wavelength.
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The flexural mode of the aluminum plate is slow compared to the

Q-SH and Q-SV waves of the honeycomb for frequencies below 10 KHz. As

a result, it is expected that this mode will not leak into the honeycomb,

but remain a bound surface wave in the plate. This supposition is borne

out by the values obtained for the root of the dispersion equation, from

which it is found that the attenuation constant a = 0. In Figure 39 we

have plotted 0 obtained from the dispersion equation. For comparison we

have plotted the wavenumber k' of the flexural wave in a free plate and

the wavenumber k of the Rayleigh wave propagating on a z-cut hexagonal

continuum having the elastic constants taken for the honeycomb at low fre-

quencies. Below 3 KHz the surface wave is essentially a Rayleigh wave in

the honeycomb. At higher frequencies the plate acts as a perturbation on

the honeycomb and $ deviates from k R . The surface wave is slow compared

to the leaky Lamb mode shown in Figure 38. At 10 KHz, the wavelength of

the surface wave is 0.057 m or 5.7 cm, which is an order of magnitude

smaller than that of the Lamb mode.

For application to NDE, it is necessary that the wavelength be on

the order of the cell diameter, which is about I cm. Thus, the flexural

mode would be useful at frequencies somewhat above 10 KHz. However, the

lamb and SH modes would require frequencies above 100 KHz to achieve such

small wavelengths. Such high frequencies lie in higher pass or stop bands

of the honeycomb, where the periodicity of the honeycomb is significant,

and must be accounted for in computing the leaky wave characteristics. It

therefore seems most convenient to use the flexural mode for NDE applica-

tions. This mode also offers the advantage of a large difference between

k; and 0, so that debonded regions of the honeycomb are easily distinguished

from bonded regions.
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VII. FOAM CORE PANELS

We consider here wave propagation in form core panels in the
frequency rang 100 KH to 1 MH for application to NDE. In this

freuecy an i0 Kz to1Mz

frequency range, the acoustic attenuation in the foam is large. As a

result, elastic waves excited in one face plate will be highly attenuated

by the time they reach the opposite face plate. Because of this pro-

perty, the wave propagation can accurately be determined by consider-

ing a single face plate bonded to a semi-infinite foam block, as was

done for the honeycomb in the previous section. For this geometry

we examine the perturbation due to the foam in the modes guided by the

face plate.

Two methods exist for bonding the foam to the aluminum. For one

method the chemical agents used to produce the foam are allowed to

react directly on the aluminum. In the process of reacting, the foam

becomes bonded to the aluminum. In the second method, preformed

foam slabs are glued to the aluminum. This second method introduces

an additional glue layer whose elastic properties greatly influence the

(14)
characteristics of the guided wave . In what follows, we consider

separately the aluminum-foam case and the aluminum - glue - foam

configuration.

It is assumed that the aluminum plate has thickness 1/16 in. and

the elastic constants used for the foam are the nominal values listed

for rigid polyurethan foams (15 ) . The glue was assumed to be a

(15)syntactic epoxy . Elastic consrants used for the various materials

are listed in Table V. The method of analysis used to find the propaga-

tion constants of the guided waves is the same as that discussed in the

previous section. For the aluminum - foam case, the expressions of

-102-
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the previous section can be used directly by substituting the mass

density of the foam for p, and setting C11 = C 3 3 = Xf , 2 f , C 12 =

C 13 = Xf and C 4 4 = "f, where Xf and tf are the Lame constants for the

foam. For the aluminum - glue - foam configuration, a similar

analysis is applied that accounts for the plane waves in the glue layer.

A. Aluminum - Foam Configuration

In Table V we have listed the shear and longitudinal wave veloci-

ties of the materials, as computed from the elastic constants that are

listed there. It is seen that the wave velocities in foam are much

smaller than those in aluminum, so that the SH and symmetric Lamb

modes guided by the plate will radiate or leak energy into the foam.

Over the frequency range considered here even the flexual mode of the

plate is fast compared to the waves in the foam, so that this wave will

also be of the leaky type.

The wavenumber k aA the leaky waves takes the form k X

where 0 is the phase constant and a the attenuation constant that results

from the radiation into the foam. Because of the low density of the

foam, its presence does not significantly perturb the value of J3. In

Figure 40 we have plotted the phase constant 0 for the lowest flexu ral

mode F(0) and lowest symmetric Lamb mode L (0) normalized to the

shear wavenumber k' in the aluminum. This plot applies to both the

free plate, and to the foam covered plate. Note that P for the lowest

SH plate mode SH(0) is equal to k' a

The attenuation constant 0, normalized to k's , for the leaky weaves

is plotted in Figure 41. Because of the low values for a, the waves can

propagate over several hundred wavelegths before experiencing signifi-

cant attuation. For example, the SH(0) mode at 0. 5 MH z propagates
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TABLE V

Material Properties for Foam Core Panels

Aluminum Foam Glue

p(k /m 3) 2. 70 x 103 48 5.8 x 102

X (N/m2) 6. 13 x 101 0  3. 17 x 106  2.2 x 109

W (N/m 2  2. 85x 10 1 0  L45x 10 6  5.6x108

C (m/s) 3. 25 x 103 L 74 x 102  9. 83 x 102

Cp (m/s) 6.62 x 103  3.56 x 102  2.39 x 103
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Figure 40. Propagation constants 0 of the L(O) and F(O) leaky wave
modes of a 1/16 in. aluminum plate on which a polyurethane
foam has been formed. These curves are numerically the
same as those found for a free plate.
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Figure 41. Attenuation constants c of the L(O), SH(O) and F(O)
leaky wave modes of a 1/16 in. aluminum place on which
a polyurethane foam has been formed.
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500 wavelengths, or about 3.3 meters before attenuating by l/e.

Because the foam can have a high attenuation constant at those

frequencies, we have investigated the effect of loss on the curves in

Figures 40 and 41. No significant effect was found up to a loss tangent

of unity. This observation indicates that the rate at which guided wave

in th aluminum plate sheds energy into the foam is not strongly depen-

dent on the loss tangent. However, the foam attenuation will prevent

the radiated energy from reaching the second aluminum plate in a panel.

B. Aluminum - Glue - Foam Configuation

The presence of the glue layer has two significant effects on the

wave propagation. First, even without the foam it makes the effective

plate thickness greater, so that higher plate modes can propagate.

Second it acts as an impedance match between the aluminum and foam,

so that the perturbation caused by the foam is much greater. We first

consider these effects for the SH modes, and subsequently treat the

Lamb modes.

1. SH Modes

The propagation constant 3, normalized to k' is indicated in Figure
s

42 for both the aluminum - glue and aluminum - glue -foam combinations.

In computing the curves of Figure 42, the glue layer was assumed to be

1/64 in. thick, which is 1/4 of the thickness of the aluminum. At low

frequencies where only the SH(O) mode propagates, in the aluminum -

glue combination 0 is seen to be nearly equal to k's, indicating that the

energy in the wave is carried primarily in the aluminum with only a

small fraction in the glue. As the frequency increases above 0. 6 MH 

the SH(O) mode shows dispersion and the SH(l) mode goes above cut off.
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Figure 42. Propagacion constants of the SH(0) and SHf(I) modes
of a 1/16 in. aluminum plate covered with 1/64 in. of
glue, with and without bonding to a semi-infinite
polyurethane foam.
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For the SH(0) mode, 3/k' tends towards the value 3. 3,which is the ratios

of the shear wavenumber in the glue to that in the aluminum. This be-

havior of a indicates that the energy of the wave is concentrated in the

glue. The energy of the SH(l) mode for frequencies somewhat above

cut off is concentrated in the aluminum.

When the foam is taken into account the dispersion characteristics

appears to shift to lower frequecnies. Thus over the frequency range

computed, the SH(0) mode has 0Om3.3k' s while the cut off of the

SH(l) mode is below 0. 2 MHE . For frequencies above cut off of thez

SH(l) mode, 3 is intially close to k' and then increases towards theS

shear wavenumber in the glue. As before, this behavior suggest that

the energy of the wave is carried primarily in the aluminum at lower

frequency, and then becomes concentrated in the glue at higher fre-

quencies.

The attenuation constant a, normalized to k's, is plotted in Figure

43 as a function of frequency. For the SH(O) mode, a is larger than

that in Figure 41 for the aluminum - foam conbination by two orders of

magnitude. Thus /e attenuation length is on the order of five times the

shear wavelength, or 5 x 3. 3 1 17 times the wavelength 2w/3 of the guided

wave. The high attenuation constant is a relult of the fact that the energy

of the SH(0) mode at these frequencies is concentrated in the glue layer,

whose elastic properties are much closer to the foam properties than

are those of aluminum. This interpretation is supported by the SH(l)

mode whose att enuation is lowest when the energy is concentrated in the

aluminum layer, and highest when the energy is concentrated in the glue.

From the viewpoint of NDE, the distinct properties cited above for

the aluminum, aluminum-glue, and aluminum- glue -foam combinations
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Figure 43. Attenuacion constants ot of the SH(0) and SHMl leaky
wave modes of a 1/16 in. aluminum plate covered with
1/64 in. of glue that bonds the plate to a semi-
infinite polyurethane foam.
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facilitate inpection of foam core panels for regions of de-bonding. Re-

gions of the aluminum plate lacking in glue, or having glue but not

bonded to the foam have very different values of 0 and a , and hence

can be distinguished by phase and attenuation measurements. For ex-

ample, consider a pair of transducers designed to launch and receive SH

waves with 3=3. 3k at 0.4MHz. 'Ahen placed over a portion of the plate
S

glued to the foam, the output of the receiving transducer will have some

finite value due to the radiation and detection of the surface wave. Over a

portion of the plate not glued to the foam, the output will have a lower

value since the surface wave has a different wavelength and will not be

strongly excited or detected. Thus, unglued regions can be detected from

changes in receiver output.

2. Lamb Modes

Because of coupling between P and SV plane wave constituents, the

dispersion characteristics of the Lamb modes are more complex than

for the SH modes. The propagation constant 3, normalized to k' is
S

plotted in Figure 44 for the lowest four Lamb modes. The labeling L(0).

F(O), F(l) and L(l) is made in accordance with their low frequency be-

havior, since the modes cannot be uniquely separated on the basis of

symmetry in the composite plate. Curves for the aluminum - glue com-

bination are shown dashed, while those for aluminum - glue - foam are

solid. The dispersion curve of the L(O) mode in the presence of foam

could not be traced past 0. 65 XMHz because of convergence difficulties in

the computer program. Comparing the curves of the L(O) and F(O, modes

with those of an aluminum plate as shown in Figure 40, it is seen that the

presence of the glue significantly influences the high frequency behavior

of the modes.
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Figure 44. Propagation constants $ of Lamb modes of a 1/16 in.
aluminum plate covered with 1/64 in. of glue, with
and without bonding to a semi-infinite polyurethane
foam.
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The presence of the foam is also seen to cause major changes in

the propagation constant, as well as introduce attenuation. In Figure

45 we have plotted the attenuation constant a normalized to k' for thes

curves labeled F (0) L (0) and F(1) in Figure 44. While the curves O(W)

for the three modes intersect, a for each mode is different at the inter-

section frequency, so that all three branches of the dispersion equation

are distinct. The F(0) branch has high attenuation at low frequency,

which decreases with frequency. Similarly, the attenuation of the F(l)

branch decreases dramatically past the cut off frequency of the F(l)

mode in the aluminum - glue combination. The low values of a for the

L (0) and F(l) modes away from 0.64 MH are consistent with the valuesz

obtained in the aluminum - foam combination. The F(0) mode however

shows much higher a.

The curves of Figures 44 and 45 indicated that the presence of glue

and adhesion to the foam can be determined from measurement of a and

0 for the Lamb modes, as discussed in the previous section. However,

a more complete analysis of the mode properties and their dependence

on layer thickness is required to devise effective test procedures.
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Figure 45. Attenuation constants & of lamb modes of a 1/16 in.
aluminum plate covered with 1/64 in. of glue, with
and without bonding to a semi-infinite polyurethane
foam.
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Appendix: Thin Plate Approximation of the Plate Modes

The geometry of an infinite plate is illustrated in Figure A-i. The

total fields in the plate can be expressed as a superposition of the modal

fields of an infinite plate. In general, we are concerned with modes propa-

gating obliquely with respect to the x axis. These modes will couple at

junction planes perpendicular to x, at which we rfiust satisfy boundary condi-

tions involving the particle velocity v and the surface traction x "T.

Obliquely traveling modes in an infinite plate have x-z dependence of

th frmex[-(+x k2 2the form exp[-j(x + kzZ ) ] where /2 + k is equal to the modal wavenumber.

In order to satisfy boundary conditions at junction planes perpendicular to x,

all modes must have the same transverse wavenumber k . Because of scatteringz

at the junction, plate modes having both + x components of propagation must be

accounted for, as indicated in the spatial dependence cited above. In addi-

tion, the fields of the plate modes have a variation with y, i.e., in the

direction through the plate.

In the microwave network representation of guided acoustic waves, the

six quantities v and x 0T entering the boundary conditions are organized into

Ix3 matrices G and _, which are

G Vz  - .(y,z) V(x)

Tx

(A-1)

Tj - S(yz) I(X)
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Figure A-I Geometry of an infinite plate and the trans-
mission line representation for a given plate
mode, taking the transmission direction to be
along x.
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Here 1(y,z) and j(y,z) are the 'bode vectors" describing the variation of

the fields transverse to x, and the relative amplitude of the various

field quantities. As discussed above, the z variation of X(y,z) and _(yz)

is contained in the factor exp(-jk zz). The modal voltage V(x) and current

I(x) satisfy standard "electrical" transmission line equations involving

the wavenumber K and modal impedance Z, as indicated in Figure A-1. The

voltage and current are composed of traveling wave solutions having x dependence

exp(+ jix).

The dispersion relation giving the wavenumber 4 + k 2 of each mode, andz

the transmission line representation of the plate modes have been derived by

Markman, et al (5 ,j) . In this Appendix, we approximate their results for X, Z

and the mode vectors for the case of a thin plate, whose thickness is small

compared to the acoustic wavelength.

A. Lamb Modes of an Infinite Plate

Lamb waves in the plate are characterized by having components of particle

displacement perpendicular to the faces of the plates and components parallel

to the direction of propagation.

1. Lowest Symmetric Mode: L(O)

The symmetric Lamb modes are those for which the particle velocity in

the direction of propagation is an even function of y, whereas the transverse

particle velocity v is an odd function of y.

The dispersion relation of the symmetric modes of the plate, which gives

the Lamb wavenumber k L  in 2 + kz2 as a function of frequency may be written

as
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K 2 _ kL2 2 k s 4k2h( 2 K cot X + k 3Ps 0 " (A-2)

S

Here the wavenumbers along y, ap and Ksare functions of kL and w defined

by the relationships

2 k 2 2 p

L P P + 2

2 2 2 . (A-3)
L s s P j

where X and 4 are the Lame constants, p is the mass density and w is the

radian frequency.

The modal fields obtained by summing the contributions from the P and

SV plane waves, which are reflected back and forth between the faces of the

plate, are

j - sin h Y
I- - ks p

k
Q(yz) 1 zCos x Y

NL S

1 (k 2 2 2) o1 2 (k - 2 - 2kz )Cos p Y

s 
(A-4)

kL1 kL

J - sin x Y

n cos 1 k -j k z+-p p z h en" cos Is 4 k L cs

k2 k L  8o R

-2-
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sL!
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K

j 2 - B -Esin x y
ks

NL s p

Cos K yP

(A-5)

k 2 kL'

i/i s -2 k )sin K. Y

t

n Cos - k -jk z
p p2 z Z

+ - 2 fpC Cos xs y e

s S
2

k
B
k L Ks Y

L

where 2 2K -k
n p 2

k L

s ks

The characteristic impedance Z of the modal transmission line is chosen to be

ZL Wi/K (A-7)

where K - k 2 -k 2 is the wavenumber in x direction.

The choice of sign before _q in (A-5) and Z L in (A-7) is made such that

the normalizing conditions
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,.t/25 *
g - q dy -l (A-8)

t/2

can be satisfied. With this normalizing condition, the power carried along x

per unit length along z, is equal to the power - Re VI* on the modal trans-
2

mission line for modes with real or imaginary K. We impose this condition to

facilitate conservation of power test of our results for mode coupling.

Approximate solution to the dispersion equation (A-2) can be obtained

for the case of a thin plate at low frequencies (K st << 1 and xp t << I) by

t t 2 2approximating cot p - and cot s - as .- and -. This approximation leads
p s

to a solution for the wavenumber k L of L(O) mode, which is the lowest symmetric

Lamb mode, and the only symmetric Lamb mode that propagates down to zero frequency.

It is found that

k L v k (A-9)

L 2 s

where v is Poisson's ratio.

With (A-9) and the approximations cos e k 1 and sin e e for e << 1,

the mode functions in (A-4) and (A-5) can be approximated by

0
kk
k z k a

=1 V' 2kL2  -jkz
g(y,z) 2-k 2 e (A-10)

N L - + k

i-v k+

0

-kz 2
vrk a1-v -JkZzz

-. e(A-iI)iN
L

it10

4 ___ I



with the characteristic impedance chosen as

ZL = - (A-12)

The normalization constant NL obtained via (A-8) is given by

NL= iV (A- 13)NL l-V

2. Antisymmetric Modes: F(O) and F(1)

In the antisymmetric modes v is an odd function of y whereas v is anx y

even function, with the result that the plate bends or flexes during its

motion. These modes are therefore referred to as flexural modes. The dis-

persion relation giving the wavenumber kF = x 2 + kz2 of flexural modes as a

function of frequency is

2 F2 2 4kF2 s

s s tan K - + - tan x< = A 1-4 s k s2

ks 8

where the wavenumbers Ks and ip are defined by the relationships

k2+ 2 2 2 p
F p p X + 2P

(A-15)

kF2 + 2 -k 2 2 p
F s s W

The modal fields are obtained again by summing the fields contributed

from P and SV plane waves that are multiply reflected between faces of the plate.

The mode vectors are given by
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cos P y
p

1kz

I(- j--1-ZsinK y
Iz p n ;

g(yz) N K p p

---- (ks2 2  - 2k ')sin n y
s p (A-16)

kF

jjt F7=i COS hSY

flCO k ~ SfKF---- sn y ejk

+ fnl COS Kp K k - s x e- kzz

np cos F
2K s  2

2 kF sin K y
kk F

s

and

2 Cs y 1-2- '-Cos Y

+1 k n cos K F k z-___ . /p _- s in ;tp
t(yz) - j 2 /P F F sin syq~~z N j2 P n cos x s "

p s2F

k K

j sin P y J -F sin Ksy

p F

(A-17)

where n and n are given in (A-6) with kL replaced by kF.

The characteristic impedance of the modal transmission line is chosen as

ZF =+ (A-18)
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where x = k kz2 is the wavenumber along x. The signs of q and Z are
F F

chosen such that (A-8) is satisfied.

There are two significant flexural modes that should be taken for the

wave propagation in the thin plate at low frequencies. One of these, the

lowest flexural mode,F(O), has a real wavenumber even for frequency approach-

ing zero, while the other, the first higher flexural mode, F(1), has an

imaginary wavenumber. The F(1) mode cannot be neglected even though it has

an imaginary wavenumber since the imaginary wavenumber vanishes as '-he fre-

quency goes to zero, and since its transverse dependence is similar to that

of the F(O) mode. As a result, the presence of F(l) strongly influences the

amplitude of the F(O) mode, and other modes, excited at a junction. In addi-

tion the F(l) couples neighboring junctions at low frequencies.

The wavenumbers of the lowest flexural mode, k and the first higher

flexural mode, k can be obtained from the dispersion equation (A-14) bykFl'
t1 K t p "n t

approximating tan K I and tan---as 2 and- for the case of a thin plate
p 2  2 2 2

at low frequencies. The modal wavenumbers are found to be

kF1 tA 6(-v) (A- 19)

The mode functions given in (A-16) and (A-17) may be approximated by
0 
2

substituting sin OB and cos e - 1 - -2, which is appropriate for the case

of a thin plate. The thin plate approximations for the F(O) mode gives
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-I 1

1-2r

g(y,z) 1 jky 1 -jk (A-20)

2kz2
jks + -

k 2((t/2) - y )

PP 2(1-v)

jk SY

1-2r

Here

r =T6,/'-v)/k t (A-22)

and the characteristic impedance is given by

Z0  AR (A-23)
0 K

The normalization constant N 0can be obtained via (A-83) as

23 s
k2 2i- 3

1 i( _J 
zq ~ 8z V0-j ' (A-24)

- 1 -2

-1+2r

z jk I e -jk z (A-25)
!.Y') N1  - '1+2r

jk + I ( _lI

NO~ ~ ~S = (-)2-) Z 212r) (A-24
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k 2 ((t/2) 2_y 2)
2(l-v)

q(yz) -j2 1 k e z (A-26)11+2r

jk y 1
s 1+2r

where r is given in (A-22). For the F(1) mode

Z, - - (A-27)

and

k 2
s2 t3 I-.

NI =/7 + [1-2 (1+2r) (A-28)

The - sign in the characteristic impedance Z1 and the mode functions q has

been chosen in order to satisfy normalizing condition (A-8).

B. SH Modes of an Infinite Plate

The SH modes are orthogonally polarized with respect to the Lamb modes

in that the partivle displacement of an SH mode is parallel to the plate

faces but perpendicular to the propagation direction. The lowest mode,

SH(O), is of even symmetry and the only SH mode that propagates down to zero

frequency. The dispersion relation for symmetric SH modes, which yield SH

wavenumbers, k, - 2 -k as a function of frequency, is given by the

simple expression

k., =!ks2 (2nr/t) 2  n - 0, 1, 2, ... (A-29)

Here, k - w is the shear wavenumber,

The normalized mode functions of even symmetry are given by
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0

(z) 1 2.y ejkz (A- 30)

N k

2 k z

S

- - 2k z nsi 2n -

k 2 t
s

k 2-K2 -jk z
q cos )n t e (A-31)

=N k2te s
kSzcos 2nTy

S

where

Ne 1 -(7) En (A-32)

with ?s = 2rT/k s and
2 n=O

En= 1 n>0 (A-33)

The characteristic impedance is chosen to be

Z (A-34)

s U)

The dispersion relation and the mode functions for the lowest SH mode,

SH(O), can be obtained by simply setting n = 0 in (A-29) through (A-33).

One obtains

kSH ks (A-35)
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0

1 1 -jk z z(A-36)

2k
z

S

0

-k2 -jIFzz (A- 3 7)

4- k 2 e

k
z

The modal quantities used in the text, and listed in equations (7)-(17)

are obtained by setting k z 0 in corresponding expression listed in ,-his

Appendix.
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